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Both the ecology and evolution of organisms are substantially 
shaped by diet and body size. Diet constrains the energy that 
is available for essential processes, such as metabolism and 

growth. At the same time, body size constrains the types and volumes 
of food that can be obtained, processed and are required to survive1. 
Together, these two sets of constraints define the classical concep-
tion of the ecological ‘niche’ and form the basis of much of modern 
ecology (Fig. 1 and Extended Data Table 1). Therefore, diet and body 
size are inextricably linked across scales, from across an individual’s 
lifespan to macroevolutionary timescales2. Previous studies includ-
ing different trophic guilds highlighted a fundamental trophic-size 
structure for modern terrestrial mammals, where invertivores are 
limited almost exclusively to very small sizes, omnivores occupy 
small to medium sizes and only specialist carnivores and herbivores 
attain the largest sizes2–4. We found that the highest and lowest tro-
phic levels (herbivores and carnivores) have greater median and 
maximum body sizes than the intermediate trophic levels (omni-
vores and invertivores), leading to a relationship that is roughly 
U-shaped when trophic guilds are ordered along a plant-to-protein 
dietary gradient (Fig. 1 and Methods). Past literature has sometimes 
referred to and figured this relationship as V-shaped (for example, 
Hiiemae et al.3). While this relationship is not always symmetrical 
and depends on the order of trophic guilds applied, for the sake of 
clarity, brevity and visualization we will refer to this trophic-body 
size relationship as U-shaped throughout the text.

This U-shaped relationship between body size and trophic status 
can be explained by multiple physiological constraints and mecha-
nisms (Fig. 1 and Extended Data Table 1). For example, as nutrient 

concentrations in tissues accumulate with increasing trophic level 
(from primary producers to carnivores), herbivores must contend 
with a generally nutrient-poor diet5. Thus, herbivores tend to be 
large to both (1) allow for increased foraging over a wider home 
range to maximize the amount of food consumed and (2) accom-
modate long and/or complex digestive systems that can maximize 
nutrient extraction (the Jarman–Bell principle6–8). Consequently, 
carnivores must be large enough to traverse the same ranges as 
their prey and also to take down these larger-bodied herbivores (the 
Red Queen hypothesis9,10). By contrast, invertivores achieve much 
smaller sizes by specializing on small protein-rich invertebrates 
whose abundance, distribution and energy content are insufficient 
to support larger body masses10. In comparison to these special-
ist dietary strategies, omnivores readily switch between plants and 
animals depending on availability and therefore face fewer con-
straints11. Still, the relatively high energy requirements of omnivores 
mean that they must be selective about the nutritional quality of 
their food—often focusing on smaller but denser diet items, such 
as seeds, nuts and insects12. Given the universality of these shared 
constraints irrespective of taxa or geography, we expect a consistent 
U-shaped trophic-size structure across taxonomic, biogeographical 
and temporal scales within vertebrates.

In this study, we tested the universality of this U-shaped 
trophic-size structure among vertebrates in the present and, for ter-
restrial mammals, the consistency across deep time and towards 
future centuries. We started by examining the robustness of the 
relationship across extant vertebrate species with available data 
(5,033 mammals, 8,991 birds, 7,356 reptiles and 2,795 fish). We also 
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tested whether the abiotic environment interacted with the U-shape 
since environmental conditions are known to constrain body size 
(for example, Bergmann’s rule13), by examining trophic-size struc-
ture within and across all global biomes. For the evolutionary past, 
we investigated the emergence of this trophic-size structure from 
fossil mammal records (5,427 species, Early Cretaceous to the pres-
ent). Finally, we examined the future of the U-shape structure by 
simulating projected mammalian extinctions to determine if recent 
human-driven changes in extinction bias have the potential to dis-
rupt the existing trophic-size structure.

Results
Taxonomic universality. In terrestrial mammals, herbivores and 
carnivores converge on the largest body sizes (for both median and 
maximum values), while omnivores and invertivores are limited to 
much smaller sizes, confirming the roughly U-shaped trophic-size 
structure described previously (Fig. 2a and Pineda-Munoz et al.4). 
Furthermore, this trophic-size structure is nearly universal among 
other modern vertebrate consumers, including terrestrial birds, 

reptiles and marine fish (Fig. 2c,e,f). The convergence towards this 
trophic-size structure suggests that its development and general-
ity are robust to the highly variable life histories and evolutionary 
trajectories of these groups. Even so, we found deviation from this 
structure in marine birds and marine mammals (Fig. 2b,d), prob-
ably due to the additional body size constraints imposed on verte-
brates that have evolved secondarily aquatic lifestyles (for example, 
thermoregulation and lung capacity; see Gearty et al.14 and Gearty 
and Payne15). Moreover, invertivores in marine groups often achieve 
much larger sizes due to the exploitation of unique filter-feeding 
opportunities (for example, bulk plankton feeding) and the fact that 
the water medium can support much larger weights, making them 
non-analogous to the terrestrial invertivore guilds16.

Biogeographical universality. When we broke down the gen-
eral patterns by individual biomes, we still consistently found the 
U-shaped trophic-size structure for extant terrestrial mammals 
(Fig. 3), birds (Extended Data Fig. 1) and marine fish (Extended 
Data Fig. 2), despite the varying ecological and evolutionary histo-
ries, degrees and types of disturbance and stability, climate, habitat 
structure and available energy for these systems and discrepan-
cies between dominant taxa. Minor deviations from this trend are 
evident for the tundra and taiga biomes (herbivore median size 
was lower than that of omnivores) and the temperate grassland 
biome (herbivore–omnivore non-significant; further details in the 
Discussion). Still, changes in the relative frequencies of species per 
guild across biomes did not appear to generally impact this relation-
ship (Fig. 3). Thus, the near-universality of trophic-size structure 
across biomes, particularly in terrestrial mammals, suggests that it 
is fundamental to the structure and ultimately functioning of com-
munities across the planet.

Temporal universality. When we extended our analysis in ter-
restrial mammals over geological timescales, we found that the 
U-shape developed before the Palaeocene Epoch (and potentially 
as early as the Early Cretaceous, 145–100.5 million years ago (Ma)) 
and has persisted for at least the last 66 million years (Fig. 4 and 
Extended Data Figs. 3–5). Therefore, the development of this 
trophic-size structure seems to have preceded the establishment of 
mammals as the dominant terrestrial fauna after the end-Cretaceous 
mass extinction 66 million years ago, when the largest land ani-
mals until then, the dinosaurs, disappeared17. Terrestrial mammals 
reflect this trophic-size structure in most epochs since then (excep-
tions: herbivore median size lower than that of omnivores in the 
Oligocene; non-significant trophic-structure during the Pliocene; 
see Discussion for further details).

Effects of projected extinctions. The U-shaped trophic-size 
structure has been a feature of terrestrial mammals for millions 
of years. Yet, we also revealed major disruptions to trophic-size 
structure. For instance, the median and range of body sizes for 
herbivores and omnivores (approximately 100-fold) and median 
body size for carnivores (approximately tenfold), have gener-
ally decreased through the Pleistocene and Holocene in parallel 
with the rise of early humans (Fig. 4), demonstrating a poten-
tially important role for human exploitation and other impacts in 
altering trophic-size structure18. Into the future, we expect con-
tinued disruption; indeed, extinction simulations suggest that 
many large- and medium-sized herbivores are likely to be lost, 
especially within the next 100–200 years (Fig. 5). These future 
predicted extinctions (based on current International Union for 
the Conservation of Nature (IUCN) extinction categorizations) 
suggest a continued and rapid reduction in herbivore median and 
maximum body size over the next century further disrupting the 
U-shaped relationship (Fig. 5). This reduction in mammal body 
sizes may be at rates even greater than those experienced during 
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Fig. 1 | observed limits and conceptual mechanisms relating body size 
to trophic guild across the world’s terrestrial mammals. The white boxes 
indicate maximum body size when including prehistoric and historic 
extinct species. The grey boxes indicate the potential maximum body 
size decreases if all IUCN threatened (vulnerable, endangered, critically 
endangered) species are lost. Mass limits (vertical bars) are based on data 
from Smith et al.21, while the mechanisms (horizontal lines and associated 
labels) are conceptual and based on the literature (Extended Data Table 
1). Silhouettes represent the smallest and largest species for each trophic 
guild. Icons are all from PhyloPic.org. Creator credits: (top, left to right) US 
National Park Service; xgirouxb; Xvazquez; Tracy A. Heath; (bottom, left to 
right) Daniel Jaron; Natasha Vitek; Becky Barnes; Ferran Sayol.
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the Pleistocene and Holocene extinction events for all trophic 
guilds and for most continents (Extended Data Fig. 6).

Discussion
Taken together, these taxonomic, biogeographical and temporal 
patterns demonstrate that a combination of evolutionary, physi-
ological and ecological pressures have driven a similar trophic-size 
structure across nearly all modern vertebrates (Fig. 1 and Extended 
Data Table 1). While the average and maximum body sizes of ter-
restrial mammals have indeed increased over the Cenozoic19–21, 
this structure appears to have manifested during the Cretaceous 
(Fig. 4), before the rapid diversification of mammals that followed 
the extinction of non-avian dinosaurs22,23. The fact that the differ-
ent trophic guilds consistently maintained their relative body size 
relationships to one another even when mammals were limited to 
smaller sizes during the reign of dinosaurs suggests that evolution-
ary and physiological pressures (Fig. 1) alone cannot explain this 
pattern. Furthermore, the consistency of this pattern across biomes 
in multiple classes of modern vertebrates (Fig. 3 and Extended Data 

Figs. 1 and 2) suggests that ecological assembly processes and the 
distribution of niches within local areas play an important role in 
maintaining this pattern.

Although trophic-size structure is consistent across vertebrates, 
biomes and epochs, we identified some notable deviations. For 
instance, secondarily marine mammals and birds do not exhibit 
the same structure. This can be explained by a combination of 
strong physiological constraints imposed on ‘warm-blooded’ spe-
cies living in the oceans (for example, limited capacity to buffer 
body temperature), the relaxation of the maximum body size due 
to living in the aquatic medium (for example, because mass is 
displaced by water) and the exploitation of unique filter-feeding 
opportunities where high-quality food is available in large quan-
tities14,15,24,25. In addition, omnivorous mammals in the cold and 
dry tundra and taiga biomes tend to be larger than omnivores in 
other biomes, although this difference was not statistically signifi-
cant (Supplementary Table 1). This is likely due to the seasonal-
ity of high-quality plant sources, which constrain omnivores to 
diets consisting of low-quality plants or vertebrates for much of 
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expect the differences in medians would become statistically sig-
nificant. During the Oligocene, omnivores exhibit larger average 
sizes than herbivores (although not significantly). These results may 
be related to climatic cooling30 during this time period, although 
fossil preservation and sampling biases can lead to unexpected 
results when examining patterns in the fossil record (Methods and 
Extended Data Figs. 3–5). However, rather than cause the consistent 
trophic-size structure we observed, fossil preservation biases are 
most likely to introduce noise, including through time averaging31, 
and obscure ecological signals (Methods). Despite this and other 
minor deviations, we observed statistically different 90th quantiles 
between herbivores and omnivores and between carnivores and 
insectivores across the entire Cenozoic (66 Ma to the present), indi-
cating that the U-shape is persistent across this era.

Recent and projected future extinctions (Fig. 5) indicate that this 
longstanding near-universal U-shaped structure may be disrupted 
by anthropogenic activities. Past downsizing of terrestrial herbi-
vores—driven by the extinction of larger species—has previously 
altered ecosystems by reducing seed dispersal distances, modifying 
fire regimes and transforming vegetation structure32–34. These eco-
system changes could be exacerbated in the future through predicted 
extinctions of many of the remaining larger herbivores (Fig. 5); such 
extinctions may also result in other negative ecosystem changes. For 
example, large-bodied herbivores exploit large amounts of resources 
over broad scales, leading to important contributions to nutrient 
transfer over vast distances35. The extinction of these herbivores will 
likely result in reduced energy transfer and thus reduced ecosystem 
productivity, degraded ecological interactions and reduced ecosys-
tem resilience to climate change35,36. Similar changes are expected 

the year26,27, tipping them towards strategies that characterize large 
herbivores and carnivores. The species trophic guild assignments 
in our database are coded at the global scale, so they might not 
account for dietary differences or prey switching such as this at 
the biome level. Therefore, it is also possible that these species 
are entirely or nearly entirely herbivorous or carnivorous in these 
biomes; if so, this would explain why they exhibit similar sizes to 
these other trophic guilds. Furthermore, it is also possible that the 
small sample sizes of omnivorous species in these biomes (tundra 
n = 7, taiga n = 15) might be leading to less accurate results than 
would be derived from larger sample sizes. Temperate grasslands 
also show no clear difference between herbivores and omnivores. 
We attribute this to the loss of many large herbivores across this 
biome during the late Pleistocene extinctions (for example, several 
species of mammoth, bison and horses)28,29. Finally, the average 
invertivore size varies significantly between some biomes (21 of 
91 pairwise comparisons; Supplementary Table 1). Eight of these 
21 comparisons include the tundra biome, indicating that inver-
tebrate diets in the tundra potentially cannot sustain sizes as large 
as those in other biomes. For the remainder of these comparisons, 
we propose that the narrow distribution of invertivore body sizes 
combined with large sample sizes may be leading to spurious 
Mann–Whitney U-test results. Outside these differences among 
invertivores, the distributions (medians and 90th quantiles) of 
mammal body sizes within trophic guilds are similar between 
biomes (Supplementary Tables 1 and 2).

While the different trophic guilds have similar distributions 
during the Cretaceous period, some of their 90th quantiles are sta-
tistically different. With larger sample sizes during this period, we 
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and compromise ecosystem functioning43. Furthermore, the effects 
of downsizing and coextinctions could be amplified by possible 
impacts of future climate change on body size that have also been 
hypothesized to lead to smaller body mass in mammals (for exam-
ple, Hoy et al.44) and ectotherms45.

The predicted future decline and extinction of wild mam-
mals described in this study, which is likely underestimated by 
not including coextinctions, could generate strong ecological and 
trophic consequences for wilderness areas, comparable to those 
triggered by past megafaunal extinctions18,46–49. Moreover, these 
changes are currently being seen in marine environments, such as 
the loss of otters in Pacific kelp ecosystems37,50. Thus, fundamental 
ecological assembly rules that have been in operation since before 
the beginning of the age of mammals are likely to be disrupted. 
While we have not examined the same future trajectories for taxa 
other than mammals due to data limitations, we know that simi-
lar extinctions are expected for marine fish, reptiles and birds due 
to global change drivers, such as habitat loss, over-exploitation, 
disease and climate change51. Thus, we surmise that the shared 

to occur in the marine realm due to the loss of marine herbivores, 
such as a reduction in the capacity of large fish to control algal over-
growth and produce carbonate sediments on coral reefs37,38.

At the same time, the introduction and increase in vertebrate 
livestock (most of which are herbivores) across the globe, in both 
agricultural and wilderness areas, could further exacerbate these 
changes through associated overgrazing and indirect effects, such 
as eutrophication, erosion and increased carbon emissions39. Other 
management actions, such as fencing, may also introduce barriers 
to dispersal, which will likely alter the biome-level patterns docu-
mented in this study40. Moreover, livestock are protected (for exam-
ple, from disease) by and support humans (omnivores) and thus 
represent a collapsed food web and focused energy transfer.

The projected loss of wild herbivores (Fig. 5) also has the poten-
tial to trigger coextinctions of large carnivores, which depend on 
lower trophic levels to meet their nutritional needs41,42. These poten-
tial coextinctions are not directly accounted for in our extinction 
forecast, that is, the IUCN Red List does not directly incorporate 
prey abundance, and could further disrupt trophic-size structure 
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Fig. 5 | Change in mass into the future. a,b, Percentage change in the median (a) and 90th quantile (b) of wild terrestrial mammal body mass per 
trophic guild predicted up to 500 years into the future. The solid bold lines show the mean trajectory and the envelopes show the 95% CIs per year 
across 10,000 simulations; the dashed lines show the present-day body mass value (median or 90th quantile) for each trophic guild. c, Illustration 
showing examples of large terrestrial mammals lost during the Pleistocene (light shading), those that are forecast to be lost in the future (medium 
shading; probability of extinction > 50%) and those likely to persist (dark shading; probability of extinction < 20%) (Supplementary Table 6). The 
smallest mammals of each guild, magnified in the insets, show little change across these intervals. Panel c credit: Julius Csotonyi.
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et al. 64; although not strictly equivalent, for simplicity, we treated the realms of 
Spalding et al.64 as marine biomes). We assigned mammals and birds to all global 
terrestrial biomes63 where they occur based on their geographical distributions 
(only including areas where the species is native or reintroduced) obtained from 
the IUCN (https://www.iucnredlist.org/resources/spatial-data-download). We 
assigned fish to global marine biomes64 where they were surveyed60. We performed 
Mann–Whitney U-tests and 90th quantile permutation tests as described above. 
The resulting P values were corrected for the number of pairwise tests across all 
biomes (n = 42). We also performed similar tests to compare the distributions of 
mammal body sizes within individual trophic guilds between different biomes 
(Supplementary Tables 1 and 2). For the permutation tests, we performed 100,000 
replicates. The number of replicates was increased in this case (compared to the 
5,000 described above) to increase the power of the test after correcting for the 
large number of pairwise tests performed (n = 364). The resulting P values were 
corrected for the total number of pairwise tests performed (n = 364).

Consistency of U-shape across time. For the temporal analysis, we used body 
mass and fossil range data previously compiled for 5,236 mammals since the 
Cretaceous19,21. Within this dataset, mammals were classified into one of four 
trophic guilds: herbivores (primarily browsers or grazers); omnivores (ambiguous 
or mixed diet); invertivores (exclusively eat invertebrates); and carnivores 
(primarily meat eaters, excluding insects and earthworms). We supplemented 
these data by obtaining body size estimates for 191 additional mammals using 
osteological measurements and allometric equations from the primary literature 
(Supplementary Tables 3 and 4). Diets for all mammals were based on expert 
opinions in the Paleobiology Database (https://paleobiodb.org/#/, downloaded on 
8 June 2021) using the trophic guild classification scheme outlined above. Fossil 
ranges for these mammals were also obtained from the Paleobiology Database 
assuming the oldest possible origination and the youngest possible extinction. We 
used the first and last fossil appearances of each mammal to code their presence 
or absence in each epoch from the Early Cretaceous to the Holocene (Fig. 4 and 
Supplementary Table 5). We performed Mann–Whitney U-tests and 90th quantile 
permutation tests as described above within each epoch. The resulting P values 
were corrected for the number of pairwise tests across all epochs (n = 27).

For each trophic guild within each epoch that had at least five species, we 
performed a bootstrapping approach to assess uncertainty in their body mass 
distributions. We performed 1,000 bootstraps and calculated the means and 
s.d. for each bootstrap replicate. The distributions of the means are reported in 
Extended Data Fig. 3 and the weighted means and s.d. are reported in Extended 
Data Fig. 4. Finally, we performed a subsampling approach where we took 
random samples of increasing size from each trophic guild within each epoch. 
We repeated this 100 times and then calculated the mean and s.d. for each sample 
(Extended Data Fig. 5).

Potential effects of biases in fossil data. We considered potential biases in 
the fossil record and how they might affect documented patterns and our 
interpretation of those patterns. For the purposes of the analyses included in 
this study, the main issue was the bias against preservation of small-bodied 
species65. However, live-dead studies have shown that the ecological structures 
of mammalian communities are retained in death assemblages66 suggesting that 
the ecological signal is recoverable from fossil data. Regardless, if there were to be 
such a bias against smaller-sized species in our sampling, invertivores would be 
preferentially impacted since they tend to be small-bodied (Fig. 2; Smith et al.67).  
However, even with this potential bias, invertivores were consistently (and 
statistically) the smallest trophic guild through time (Fig. 4) and would possibly be 
even smaller on average without this preservation bias. Also, we did not exclude 
species below a certain size because that would have differentially biased our 
estimates of the body size distributions of the different trophic guilds since they 
do not encompass the same body size ranges. Bootstrap and subsetting analyses 
indicated that the identified patterns are robust (Extended Data Figs. 3–5).  
Moreover, they suggested that deviations from the overall U-shape in the 
Oligocene are not statistically significant and may be a result of a low omnivore 
sample size during this epoch. Importantly, these biases in fossil data should 
introduce noise into these patterns and are unlikely to cause a U-shaped pattern in 
body size among trophic guilds.

Consistency of U-shape in the future. We simulated yearly future extinction 
scenarios for 4,804 terrestrial mammal species, that is, those with data available 
for diet, body mass, generation length56 and IUCN status, over a 500 year time 
horizon using the iucn_sim program v.2.1.1 (Andermann et al.68) 10,000 extinction 
simulations. The iucn_sim program uses extinction probabilities derived from 
the IUCN Red List69 (for example, least concern, near threatened, vulnerable, 
endangered, critically endangered, extinct/extinct in the wild) to simulate future 
extinctions68. Specifically, the history of the Red List, that is, historic status changes 
and cumulative amount of time spent in each status, is used to inform potential 
status transitions away from a species’ current status (for example, transitions 
from critically endangered to extinct, or endangered to vulnerable) through time68. 
Therefore, historic status changes are assumed to characterize the potential for 
future status changes. Species’ generation lengths were used to adjust the time 

U-shaped trophic-size structure exhibited by these groups (Fig. 1) 
is also likely to continue to be disrupted in the coming decades, 
leading to a dramatic global shift in Earth’s ecosystem processes 
not seen in at least 66 million years.

Methods
Briefly, we summarized trophic-size structure for mammals through time, with 
body mass comparisons across four trophic guilds—herbivores, omnivores, 
invertivores, and carnivores. We assessed the consistency of emergent patterns 
across biomes and taxa. We compared the rate of extinction in the different 
trophic guilds through the past and future. We used R v.4.1.0 (ref. 52) for all our 
analyses. The R code summarizing the major analytical steps can be accessed at 
https://github.com/willgearty/Trophic-Extremes.

Consistency of U-shape across taxa. To evaluate the consistency of the 
U-shape across vertebrate consumers, and across endothermic and ectothermic 
animals from both marine and terrestrial realms, we undertook global analyses 
of trophic-size structure for mammals (terrestrial), marine mammals, birds 
(terrestrial), marine birds, reptiles and fish (Fig. 2) (see below for the data sources). 
We analysed marine birds and marine mammals separately from their terrestrial 
relatives due to the different energetic constraints across marine and terrestrial 
realms14,15. We defined marine birds as those birds that feed at sea, either nearshore 
or offshore53—the families Alcidae, Anhingidae, Diomedeidae, Fregatidae, 
Gaviidae, Hydrobatidae, Laridae, Oceanitidae, Pelecanidae, Phaethontidae, 
Phalacrocoracidae, Podicipedidae, Procellariidae, Spheniscidae, Stercorariidae and 
Sulidae. We defined marine mammals as those mammals that generally inhabit 
marine and/or freshwater systems—the families Balaenidae, Balaenopteridae, 
Cetotheriidae, Delphinidae, Dugongidae, Eschrichtiidae, Iniidae, Kogiidae, 
Lipotidae, Monodontidae, Odobenidae, Otariidae, Phocidae, Phocoenidae, 
Platanistidae, Pontoporiidae, Trichechidae and Ziphiidae.

We used the best available diet and body size data for each taxonomic group 
(we only included species with complete diet and body size data): terrestrial 
mammals (5,033 species; using a previously collated database54 and primarily 
derived from 4 datasets55–58), marine mammals (118 species55–58), terrestrial 
birds (8,991 species54), marine birds (281 species54), reptiles (7,356 species59) 
and fish (2,795 species60). For fish, estimates of body mass are scarce, so we used 
maximum body length, which is a more commonly measured value of body size 
for fish and is known to scale predictably with size. We classified species into 4 
trophic guilds based on diet proportions where available (mammals and birds57): 
herbivores (>50% use of plants, including plant material, fruits, nectar and seeds); 
invertivores (>50% use of invertebrates); carnivores (>50% use of vertebrates, 
including endotherms, ectotherms, fish and carrion); and omnivores (≤50% use 
of plants, invertebrates and vertebrates). We translated the reported diet data for 
reptiles to match the trophic guilds for mammals and birds; however, this was not 
possible for fish.

Our trophic guild classification and trophic guild order (herbivore, omnivore, 
invertivore, carnivore) were selected to characterize a gradient from plant-based 
to animal-based diets. This plant–animal gradient represents a transition between 
high carbohydrate and high protein dietary materials3; hence, it reflects changes 
in dietary nutritional content5. In addition, the gradient reflects a general shift 
in trophic level from primary consumers (that is, herbivores) to secondary 
and tertiary consumers. This shift in trophic level underpins the separation of 
invertivores from carnivores. While these two guilds have been combined in other 
work2, this ignores the fact that they have differing average trophic levels, differing 
ecological roles and differing ecophysiological body size constraints (Tucker 
and Rogers16 ; Fig. 1 and Extended Data Table 1). In this study, we used a coarse 
trophic guild classification, which would inevitably lose some of the finer dietary 
specialization between species61 but allowed us to analyse broad patterns in the 
relationship between body mass and diet across vertebrates2. Overall, our trophic 
guild classification and guild order, which reflects diet nutritional content and the 
average trophic level of consumers, captures major ecological differences between 
species and is underpinned by multiple ecophysiological constraints (Fig. 1 and 
Extended Data Table 1).

We used Mann–Whitney U-tests to assess whether pairwise trophic guilds had 
statistically different body size distributions. We used non-parametric permutation 
tests to assess whether the 90th quantiles of the body size distributions of 
pairwise trophic guilds were statistically different. We performed 5,000 random 
permutations to establish a null distribution of 90th quantile differences, then 
compared the observed 90th quantile difference to estimate the probability (P 
value) that this difference occurred due to random chance. The P values from 
these two sets of tests have been corrected for multiple tests within each taxonomic 
group (n = 3) using the Holm method62 and are displayed in Fig. 2.

Consistency of U-shape across biomes. To test for spatial (biogeographical) 
consistency in the U-shape across biomes with markedly different environmental 
characteristics, we analysed extant terrestrial mammal (Fig. 3) and extant terrestrial 
bird (Extended Data Fig. 1) species pools for each terrestrial biome63, and extant 
fish (Extended Data Fig. 2) species pools for each marine biome (Spalding 
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frame associated with the transitions68. The simulations could then be used to 
estimate extinction probabilities, based on transitions to the extinct status. For 
further details of the extinction models see Andermann et al.68.

We quantified the median and 90th quantile body mass trajectories using the diet 
and body mass data for extant terrestrial mammals54 and the estimated extinction 
dates generated by iucn_sim68. We calculated the mean and 95% confidence interval 
(CI) (that is, the 2.5th and 97.5th percentiles) of these two statistics across the 10,000 
simulations per trophic guild per year. The median extinction probabilities across all 
extant mammals are reported in Supplementary Table 6.

Comparison of U-shape future changes to Pleistocene changes. We calculated 
the median body size for each continent before and after the Pleistocene 
extinctions based on mammal body sizes in the updated MOM database (v10;  
ref. 21). We then calculated the median body size for each continent before and after 
the predicted future extinctions based on extant species (before) and extant species 
minus species identified as threatened on the IUCN Red List (after), again using 
the MOM database21. The lengths of the continent-specific Pleistocene extinctions 
were estimated based on the timing of the major extinctions reported in Koch and 
Barnosky70, which is based on Barnosky et al.29). The lengths of the predicted future 
extinctions were set to 500 years to correspond to the projections in Fig. 5. Rates 
were calculated as the changes in median body size across the extinctions divided 
by the lengths of the extinctions (Extended Data Fig. 6).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data are available at https://github.com/willgearty/Trophic-Extremes.

Code availability
All code is available at https://github.com/willgearty/Trophic-Extremes.
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Extended Data Fig. 1 | trophic-size structure across global biomes for terrestrial birds. Body mass distributions per trophic guild for 8,991 terrestrial bird 
species across biomes. Birds were assigned to all biomes in which they occur. Labels indicate the number of species per boxplot. Biomes are ordered by 
their absolute latitudinal distribution. Boxplot elements and stars as in Fig. 2.
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Extended Data Fig. 2 | trophic-size structure across global marine biomes for fishes. Maximum body length distributions per trophic guild for 2,795 fish 
species across marine biomes. Fishes were assigned to all biomes in which they occur. Labels indicate the number of species per boxplot. Marine biomes 
are ordered by their absolute latitudinal distribution. Boxplot elements and stars as in Fig. 2.
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Extended Data Fig. 3 | Distributions of bootstrap means of terrestrial mammal body masses by trophic guild since the Early Cretaceous, 145 million 
years ago. Each boxplot represents the results of 1,000 bootstrap replicates. Silhouettes show example species for each time interval. Boxplot elements 
as in Fig. 2. Silhouettes show example species for each time interval. Icons are all from PhyloPic.org. Creator credits: (left to right) T. Michael Keesey; Scott 
Hartman; Heinrich Harder; Zimices; Christine Axon; T. Michael Keesey; US National Park Service; Steven Traver, Steven Traver.
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Extended Data Fig. 4 | Weighted bootstrap means (±1.96 weighted standard deviation) of terrestrial mammal body masses by trophic guild since the 
Early Cretaceous, 145 million years ago. Silhouettes show example species for each time interval. Icons are all from PhyloPic.org. Creator credits: (left to 
right) T. Michael Keesey; Scott Hartman; Heinrich Harder; Zimices; Christine Axon; T. Michael Keesey; US National Park Service; Steven Traver, Steven Traver.
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Extended Data Fig. 5 | Distributions of subsample means of terrestrial mammal body masses by trophic guild since the Early Cretaceous, 145 million 
years ago. Each boxplot represents the results of 100 subsamples. Each panel indicates the increasing size of the subsamples (indicated by the panel 
titles). Boxplot elements as in Fig. 2.
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Extended Data Fig. 6 | Comparison of effects of predicted future extinctions and observed Pleistocene extinctions on rate of change of median body 
size split by trophic guild and continent. Text near points corresponds to the continent names (AF: Africa, AUS: Australia, EA: Eurasia, NA: North America, 
SA: South America). Pleistocene extinctions are blue, predicted future extinctions are green. Dashed lines indicate 5th and 95th quantile regressions of 
Pleistocene extinctions.

NAtuRE ECoLoGy & EvoLutioN | www.nature.com/natecolevol

http://www.nature.com/natecolevol


Articles NATUrE EcologY & EvolUTioNArticles NATUrE EcologY & EvolUTioN

Extended Data Table 1 | theoretical mechanisms of body size constraints in vertebrates by trophic guild from the primary literature

trophic Guild type of Constraint Mechanism References

Herbivores Minimum Size Physiology: Need to be big enough to have digestive systems efficient (large) enough to 
extract enough energy; smallest herbivores are eating fruit or seeds which are energy dense

8

Promotes Smaller 
Size

High quality plant resources (fruit/seeds) are lower in abundance and seasonal 5

Higher population sizes and lower extinction risk 71

Promotes Larger Size Jarman-Bell principle (larger species can survive on lower quality forage) 6,7

Able to travel farther (and migrate) 72

Large size is a generally effective strategy for protection against predators 33

Maximum Size Lower quality resource availability 12

Biomechanical (bone density/structure, heart size/circulation, overheating) 73,74

Plant fermentation efficiency limit 72

Omnivores Minimum Size Physiology: High mass-specific metabolism, need very high protein food source 11

Promotes Smaller 
Size

Higher population sizes and lower extinction risk 71

Promotes Larger Size Larger size leads to lower mass-specific metabolic rate, higher efficiency 10

Maximum Size Resource availability: Larger than max size of carnivores (for example, bears) because they 
can rely on plants when animals are unavailable; smaller than max size of herbivores because 
they lack the digestive systems required to process bulk energy-poor foods

12

Invertivores Minimum Size Physiology: High mass-specific metabolism, need very high protein food source 11

Need to be larger than their prey 9

Promotes Smaller 
Size

Higher population sizes and lower extinction risk 71

Promotes Larger Size Larger size leads to lower mass-specific metabolic rate, higher efficiency 10

Maximum Size For terrestrial mammalian invertivores, the abundance, distribution and energy content of 
terrestrial invertebrates are not sufficient to support body masses above 20 kg

10

Carnivores Minimum Size Need to be larger than their prey (at least at these sizes) 9

Promotes Smaller 
Size

Higher population sizes and lower extinction risk 71

Promotes Larger Size Patchiness of food favors fasting and starvation resistance afforded by larger sizes 75

Larger size leads to lower mass-specific metabolic rate, higher efficiency 10

Maximum Size 1,100 kg limit due to tradeoff of high hunting costs versus payoff 10
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Study description We aggregated previously collected body size and trophic level data for vertebrates. We then assessed patterns between these two 
attributes across different biomes and vertebrate orders and through time. We then assessed how these patterns would be impacted 
by projected biased mammalian extinctions.

Research sample Our dataset covers mammals (5,151 extant and 5,427 extinct species), birds (9,272 extant species), reptiles (7,356 extant species), 
and fishes (2,795 extant species). All data come from previously published datasets, except for 191 extinct mammal species which 
were added for this study (see Methods).

Sampling strategy No sample-size calculations were performed beforehand; we used all of the data that was available. We discuss (for the fossil 
analyses) how some time intervals may have insufficient sampling.

Data collection Osteological measurements were collected from literature for 191 extinct mammal species. Allometric equations based on extant 
species were used to estimate the body mass of these species. Details are available in Supplementary Table 1.

Timing and spatial scale The extant data are global. The fossil data are global and range from 0 to 145 million years old.

Data exclusions We did not exclude any available data from our analyses.

Reproducibility No experiments were conducted for this study.

Randomization No experiments were conducted for this study.

Blinding Measurements were taken from previously published literature and blinding was not relevant.

Did the study involve field work? Yes No
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ChIP-seq
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Palaeontology and Archaeology
Specimen provenance No new palaeontological specimens were collected for this study.

Specimen deposition No new palaeontological specimens were collected for this study.

Dating methods No new dates are provided.
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Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Study did not involve laboratory animals.

Wild animals Study did not involve wild animals.

Field-collected samples Study did not involve samples collected from the field.

Ethics oversight No ethical approval or guidance was required.
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